

Universidad Politécnica de Madrid ETS de Ingenieros de Caminos, Canales y Puertos

Adaptation of Transport to climate change in Europe: Main findings of the EEA report 8/2014

Ángel APARICIO Technical University Madrid European Topic Centre on Climate Change Adaptation European Environment Agency (ETC/CCA)

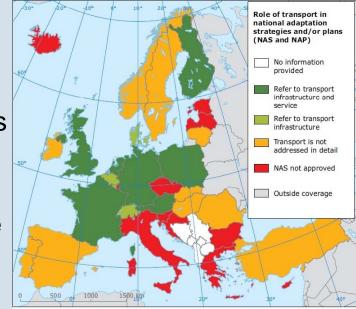
Adaptation of Transport to climate change in Europe: Main findings of the EEA report 8/2014

- 1. The context: ETC/CCA
- 2. Adaptation in the current transport governance framework
- 3. Mapping current transport adaptation actions
- 4. Lessons learnt
- 5. Key challenge ahead: Adaptation, mitigation, and the transition paradigm
- 6. Elements for a research agenda

1. The context: ETC/CCA

• ETC/CCA

- European Topic Centre on Climate Change impacts, vulnerability and Adaptation (ETC/CCA)
- A consortium of European research centres, selected through a public call of the European Environment Agency (EEA)
- Annual implementation programmes approved by EEA
- Transport adaptation included in the work programmes 2013 and 2014
- Partners involved in transport adaptation tasks
 - Technical University of Madrid (Spain)
 - Meteorological Office (United Kingdom)
 - Umweltbundesamt (Austria)
 - SYKA (Finnish Environmental Institute)



2. Adaptation in the current transport governance framework

Increasing visibility of transport in National Adaptation Strategies (NAS):

- Stakeholders have reacted positively to the inclusion of transport in NAS:
 - Quick reaction from infrastructure managers for revision of design and maintenance practice
 - Difficulties to integrate adaptation within the planning process
- First actions and achievements:
 - Revision and upgrading of current standards and technical guidelines
 - Identification and action on vulnerable spots

Sources: ETC/CCA, 2013; EC and EEA, 2014; EEA, 2014b.

2. Adaptation gaps in the current transport governance framework

The institutional framework for adaptation in transport	Key perceived barriers to adaptation action	European action welcomed on
"Top-down", modal approach Infrastructure managers leading Mobilizing in-house knowledge Limited involvement of service providers, users, civil protection authorities	Many barriers identified, but focus on: - Lack of awareness - Lack of resources	Cooperation among stakeholders Funding Transport research
A lost opportunity to strengthen collaborative planning and governance practices?	Does adaptation deserves more attention in the transport policy agenda?	<i>Is current EU involvement appropriate?</i>

- Based on a screening process: 38 experiences reviewed
 - All transport modes included
- Focus on infrastructure:
 - at both, maintenance and design stages
- Main focus identified:
 - keeping current functionality/ performance also in future
- No quantitative assessment of adaptation options
 - Traditional assessment tools (CBA) not appropriate to deal with uncertainty?
 - Alternative approach: are additional costs reasonable compared to current practice?

Research and studies				
	Vulnerability assessment:			
		Maintenance		
Knowledge expansion	Checking critical infrastructure	and design	Contingency plans	
Coping with uncertainty	and increasing resilience	Revising	- Weather inform.	
anoontainty	Applying new	existing	Weighting options:	Long-term
	assessment tools	guidelines, standards	 Quick-recovery Users' inform. Climate-proofing 	Planning
			CBA assessment?	Scenario building

Research and studies

- EU FP7 projects
 - EWENT, WEATHER, ECCONET
 - MOWE-IT
 - TOPDAD, BASE, ENHANCE...

• National research projects

- UK: TRACCA (rail)
- DE: KLIWAS (waterborne transport)

Vulnerability assessment

- Pilots based on risk assessment concepts
 - Vulnerability = Prob(Occurrence) x Impact
 - France: Nice airport

CAMPUS

POLITÉCNIC

DE EXCELENCIA INTERNACIONAL

- Denmark: Copenhagen airport
- Scotland: Scottish road network

Developing new assessment tools

- Norway: xGEO (roads)
- Denmark, Sweden...: Blue spot concept (roads)
- Austrian: ÖBB database on rail disruption events

Revision of maintenance and design guidelines

• Identification of priorities vs. comprehensive revision

- UK: Railway drainage standards
- European Commission mandate on revision of standards (2014)
- FR: Comprehensive revision of transport infrastructure standards
- DK: Copenhagen metro

Contingency plans and revision of operational practices

- Tailored weather information
- Quick recovery vs. major infrastructure investments

Long-term analysis and scenario building

- Limited consideration of adaptation within long-term planning
 - TEN-T: adaptation should be included within "working plans" for 9 TEN-T priority corridors
 - FR: On-going study on long-term changes in urban mobility patterns
 - DHL: Exploring resilience of future logistics chains

4. Lessons learnt (1/2)

• Keen interest in adaptation within the transport community

- But limited mainly to infrastructure issues

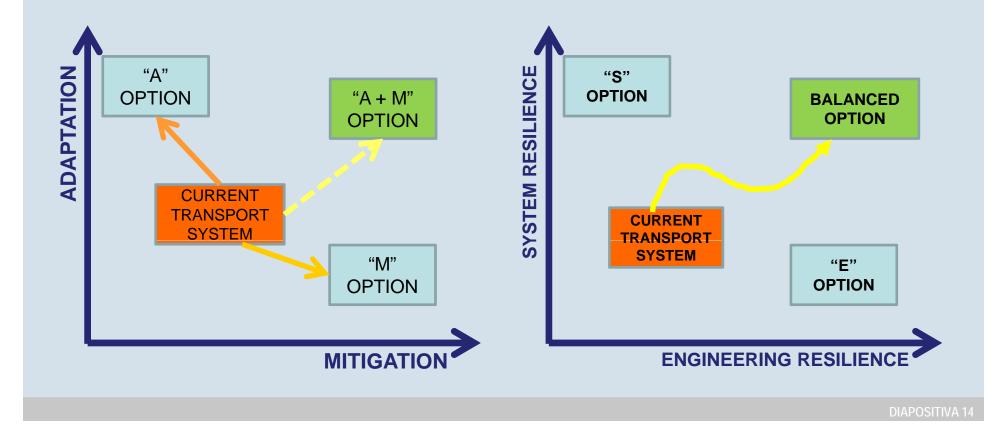
• Looking for pragmatic, low-regret actions

- Based on in-house knowledge and expertise
- Vulnerability studies have been made by many infrastructure managers
- Contingency plans focusing on low-regret measures, as options are difficult to compare and assess properly

• The knowledge base has significantly expanded in the last 5 years

- Based on better tailored climate forecasting and estimates
- Impact assessment generally based on general equilibrium models
- Transitions towards low-carbon mobility not considered

4. Lessons learnt (2/2)


- Adaptation is not integrated within transport planning practice
 - No specific consideration of adaptation challenges within on-going national transport planning processes
 - Vulnerability assessment lacking in TEN-T (and in most of TEN-T priority corridors)
- Conflicting expectations and strategies: engineering resilience, demand management, recovery options...
 - Assessments based on current conditions (socio-economic framework, transport system operations...)
 - Transport impacts considered: those due to infrastructure disruption
 - No radical changes expected in the operating conditions of transport systems

5. Key challenge ahead: Adaptation, mitigation, and the transition paradigm

Integrating the transition challenge Asssessing adaptation options

6. Elements for a research agenda

MOVING FORWARD TOWARDS COLLABORATIVE PLANNING

Adaptation as an opportunity to collaborative governance ...and to stakeholder involvement

ADAPTATION WITHIN LONG-TERM PLANNING

Joint approach to mitigation and adaptation Build upon current practice: TEN-T and national transport plans

DEVELOPING STRONGER ASSESSMENT TOOLS:

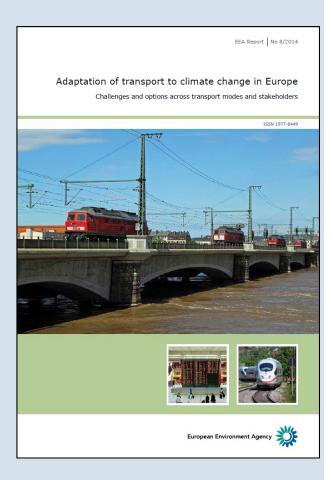
Including compatibility with low-carbon transitions Including demand management and flexibility

IMPROVING THE KNOWLEDGE BASE:

Further development of transport-tailored climate forecasts

FURTHER INFORMATION

• ETC/CCA TECHNICAL PAPER 03/2013


– http://cca.eionet.europa.eu/reports

CLIMATE ADAPT PLATFORM

– http://climate-adapt.eea.europa.eu/

• EEA REPORT 8/2014

- Adaptation of transport to climate change in Europe: Challenges and options across transport modes and stakeholders
- http://www.eea.europa.eu/publications/adaptat ion-of-transport-to-climate

